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Improved results can often be obtained from second-order Rayleigh- 
Schr6dinger perturbation calculations of electron correlation energies using 
large basis sets by introducing a scaling factor in the zero-order Hamiltonian. 
The scaling parameter may be determined from full third-order calculations 
using a smaller basis set. This scaling procedure can be applied in a systematic 
fashion by employing a sequence of even-tempered basis sets. Calculations 
illustrating this approach for the beryllium atom and the neon atom are 
presented. The scaling procedure is also employed in conjunction with a 
universal systematic sequence of basis functions. Calculations illustrating this 
Correlation energy - Mang-body perturbation theory. 
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1. Introduction 

The absolute accuracy of atomic and molecular electronic structure calculations is 
ultimately determined by the quality of the basis set employed. The use of basis 
sets in molecular calculations is almost obligatory due to the impossibility of 
factorising the molecular field. To perform accurate calculations large basis sets 
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are required. However, the use of large basis sets makes the computations 
time-consuming (e.g. the time required for integral evaluation depends on the 
fourth power of the number of basis functions while the time required for a 
four-index transformation depends on the fifth power). Clearly, in order to 
perform accurate calculations the construction of large basis sets and the 
development of efficient schemes for handling them are required. 

In this paper three recent developments in the construction of large basis sets are 
combined; namely, 

(i) even-tempered basis sets [1-6] 
(ii) universal basis sets [7-11] 

(iii) systematic sequences of basis sets [12-15]. 
These developments are employed in conjunction with two advances in the 
calculation of correlation energies: 
(i) many-body perturbation theory of molecules [16-20] 

(ii) scaling of the reference Hamiltonian [21-24] 
It is demonstrated that by combining these concepts a potentially very efficient 
and accurate technique for calculating electron correlation energies can be 
obtained. 

In the following section an outline of the scaling technique is given. Even- 
tempered basis sets are briefly discussed in Sect. 3 and the use of systematic 
sequences of even-tempered basis sets is described in Sect. 4. In Sect. 5, the use of 
scaling in second-order electron correlation energy calculations using a systematic 
sequence of even-tempered basis functions is described and illustrative cal- 
culations are presented for the beryllium atom and for the neon atom. Universal 
even-tempered basis sets are briefly discussed in Sect. 6 and the use of a universal 
systematic sequence of even-tempered basis sets is addressed in Sect. 7. The use of 
scaling in second-order calculations using a universal systematic sequence of 
even-tempered basis sets is described in Sect. 8 and some illustrative calculations 
are presented for radial beryllium-like ions. This is followed by the concluding 
remarks. 

2. Scaling in Electron Correlation Calculations 

The introduction of a scaling parameter in the zero-order Hamiltonian used to 
generate perturbative expansions goes back to the work of Feenberg and his 
collaborators [25]. Recently it has been shown [21] that improved results can 
often be obtained from second-order Rayleigh-Schr6dinger perturbation studies 
of electron correlation energies using large basis sets by introducing a scaling 
parameter,/x, in the zero-order Hamiltonian, ~0, giving 

The modified perturbation is then 

&+(1-~)~o 
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so that the full Hamiltonian is recovered by adding the zero-order operator and 
the perturbing operator. The scaled energy components, which will be dis- 
tinguished by a tilde, are related to the original energy components as follows: 
[25-27] 

E o + E 1  = E o + E 1  

/~2 ~-~ P , - 1 E 2  

/~3 = ~ - 2 E 3  + / z - 2 ( / z  -- 1 )E2  
/~4 = /A, -3 /~  4 n t" 2~-3(tx - 1 )E3  +/x--3  (/z - 1)2E2.  

The scaling factor may be chosen so that/~3 = 0 ;  that is [26] 

= 1 - E 3 / E 2 .  

In the scaling procedure suggested in Ref. [21], tx is determined from a full 
third-order energy calculation using a basis set of moderate size. This value of/x is 
introduced into a second-order calculation using a large basis set. 

The use of the scaling technique has been demonstrated previously for the 
beryllium atom and for the neon atom [21, 23]. It has also been employed in the 
calculation of molecular polarisabilities by many-body perturbation theory [24]. 

The scaled second-order e n e r g y ,  /z-IE2 is closely related to the [2/1] Pad6 
approximant to the energy series. The [2/1] Pad6 approximant can be constructed 
from third-order calculations and, since it has the form of a geometric series, it is 
sometimes referred to as the "geometric approximation". However, this name 
does not reflect the nature of the perturbation series, since terms obtained by 
expanding the [2/1] Pad6 approximant do not correspond to higher-order terms 
in the perturbation expansion [22, 23]. 

3. Even-tempered Basis Sets 

In an even-tempered basis set the orbital exponents, (k, are taken to form a 
geometric series dependent on two parameters a and fl ; thus 

~k=C~fl  k k = l , 2  . . . . .  M. 

The selection of orbital exponents in this fashion appears to have been first 
suggested in 1963 by Reeves and Harrison [1-2]. More recently, this approach has 
been followed by Ruedenberg and his coworkers [3-6] who suggested the term 
"even-tempered" to describe these basis sets. 

An even-tempered basis set cannot become linearly dependent since in practice 
the parameter fl always remains greater than one. The value of the overlap 
integral between two normalised Gaussian or Slater functions depends only on the 
ratio of the exponents and thus, for a given symmetry, the elements of the overlap 
matrix are constant along diagonal lines. This suggests that even-tempered basis 
sets span the Hilbert space evenly. 
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4. Systematic Sequences of Even-Tempered Basis Sets 

Feller and Ruedenberg [12] and Schmidt and Ruedenberg [13] have devised 
schemes for systematically extending basis sets of the even-tempered type. They 
applied their scheme to a number of atomic systems using the Har t ree-Fock 
model and sets of Gaussian primitive functions. The present author [14] has 
examined this technique for atomic calculations which take account of electron 
correlation by means of the many-body perturbation theory. The systematic 
approach enables the convergence of the calculations with respect to the size of 
the basis set to be examined and the basis set limit estimated. It is also possible to 
derive empirical upper bounds and empirical lower bounds to the basis set limit by 
making assumptions about the convergence properties of the calculated energies 
with respect to the size of the basis set. 

For an even-tempered basis set to approach a complete set as the number of 
functions, N, is increased it is necessary that a and/3 be functions of N. Since 
a ~ 0,/3 ~ 1 and/3u ~ oo as N ~ co, Ruedenberg and his co-workers have sugges- 
ted that the empirical forms [12, 13] 

In In/3 = b  In N + b '  

l n a  = a  In ( /3-  1 ) + a '  

be used to determine a and/3 for a given N. The constants a, a ' ,  b and b' may be 
determined by a leasted squares fit to "energy-optimised" values of the exponents 
for even-tempered basis sets of different sizes. 

5. Scaling in Electron Correlation Energy Calculations Using a Systematic 
Sequence of Even-Tempered Basis Sets 

In scaling the zero-order Hamiltonian in correlation calculations in the manner 
described in Sect. 2, it is clearly desirable that the two basis sets involved be 
related in a well defined fashion. The scaling technique can be applied to a series of 
calculations corresponding to a systematic sequence of even-tempered basis sets 
as described in Sects. 3 and 4. 

Table 1. Values of tz[ns]-lE2[ms], m >- n, for the ground state of the beryllium atom. The sequence of 
basis sets given by Schmidt and Ruedenberg for Be was used a 

[ms] E2 tx[6s] /x [8s] ~[10s] tz[12s] /z[14s] /z[16s] tz[18s] tx[20s] 

[6s] 15.080 17.140 
[8s] 15.662 17.800 18.089 
[10s] 15.832 17.994 18.285 18.322 
[12s] 15.881 18.050 18.343 18.380 
[14s] 15.906 18.078 18.371 18.409 
[16s] 15.916 18.090 18.383 18.420 
[18s] 15.922 18.096 18.389 18.426 
[20s] 15.925 18.099 18.393 18.430 

18.384 
18.413 18.421 
18.425 18.433 18.434 
18.431 18.439 18.440 18.440 
18.434 18.442 18.444 18.444 18.444 

a All energies are in millihartree with signs reversed. 
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In Table 1, the result of introducing a scaling parameter  into previously reported 
calculations [14] on the beryllium atom are shown. The sequence of Gaussian 
basis sets given by Schmidt and Ruedenberg [13] for Be were used to calculate the 
correlation energy in the "s limit" using third-order many-body perturbation 
theory. Eight basis sets, denoted by Ins] n = 6, 8 . . . . .  20, were employed. The 
value of the scaling parameter  has been determined, such that/~3 = 0, for each 
basis set and applied to all second-order calculations using basis sets which are at 
least as large. Thus txEns]-lF2Ems], m >! n denotes a scaled second-order energy 
in which the parameter /z  is given by 

lz[ns] = 1 - E 3 [ n s ] / E 2 [ n s ] .  

Some of the results are displayed in Fig. 1. The lowest curve shows 
tx [ns]-lE2[2Os] as a function of n, which can be seen to have converged to within 
0.1 millihartree of tx[20s]-lE2120s] when n = 8. The other curves shown are 
tx[6s]-lE2[ns], Iz[8s]-lE2[ns], tx[lOs]-lE2[ns]. E2[ns] is also shown for 
comparison. 

In Table 2 the results obtained by using the scaling procedure are shown for the 
neon atom using the [2ns/np] "energy-balanced" sequence of even- tempered 
basis sets given by Schmidt and Ruedenberg [13]. The many-body perturbation 
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Fig. 1. Convergence of various scaled second-order energies with basis set size 
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Table 2. Values of tz[2ns/np]-lE2[2ms/rnp], m >-n, for the ground state of the neon atom. The 
"energy balanced" sequence of basis sets given by Schmidt and Ruedenberg for Ne was used a 

[2ms/mp]E2 tz[6s/3p] t~[8s/4p] tz[lOs/5p] tz[12s/6p] tz[14s/7p] lz[16s/Sp] lz[18s/9p] 

[6s/3p] 142.508 141.775 
[8s/4p] 170.469 169.592 167.554 
[lOs/5p] 184.189 183.241 181.040 180.446 
[12s/6p] 189.122 188.149 185.888 185.278 185.080 
[14M7p] 190.769 189.435 187.507 186.507 186.892 
[16s/8p] 191.414 190.430 188.141 187.524 187.323 
[18s/9p] 191.691 190.705 188.413 187.796 187.594 

186.570 
187.201 187.166 
187.472 187.437 187.430 

a All energies are in millihartree with signs reversed. 

theory calculations using this sequence of basis sets have again been reported in 
Ref. [14]. It can be seen that tz[lOs/5p]-lE2[18s/9p] is within 1 millihartree of 
lz [ 18s/9p ]- 1E2[ 18 s~ 9p ]. Note  that, unlike the calculated correlation energies for 
the beryllium atom, the correlation energies for the neon a tom decrease in 
magnitude along the sequence ix[2ns/np]-lE2[18s/9p].  

6. Universal Even-Tempered Basis Sets 

In order  to per form accurate molecular electronic structure calculations it is 
necessary to employ large basis sets. Large basis sets are necessarily flexible and 
can thus, with very little loss in accuracy, be transferred f rom system to system, at 
least for the first- and second-row of the periodic table. Such a basis set has been 
te rmed a "universal basis set" [7-11]. It is convenient to take a universal basis set 
to be of the even- tempered  type. The advantages which result f rom the use of a 
universal even- tempered  basis set have been discussed in detail previously [7-113. 
The use of a universal even- tempered  basis set has been demonstra ted  for both 
atoms and molecules within the matrix Ha r t r ee -Fock  model  and in calculations 
which include electron correlation effects by means of many-body  perturbat ive 
techniques [7-113. 

7. Systematic Sequence of Universal Even-Tempered Basis Sets 

The scheme devised by Ruedenberg  and his co-workers [12, 13] for systematically 
extending basis sets of the even- tempered  type can be applied to universal 
even- tempered  basis sets of the type described in Sect. 6. The same sequence of 
basis sets is used in calculations on a series of atoms irrespective of their nuclear 
charges. This approach has been investigated by the present  author [15] by 
performing matrix Ha r t r ee -Fock  calculations and correlation calculations for the 
radial beryllium-like ions Li- ,  B § C 2+, N 3+, O 4+, F 5§ Ne 6+, using the basis set 
given by Schmidt and Ruedenberg  [13] for the beryllium atom. Both the H a r t r e e -  
Fock energies and the correlation energies for the neutral and positively charged 
species were found to converge satisfactorily with respect to the size of the basis 
set. On the other hand, for the Li -  ion the convergence propert ies with respect to 
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Table 3. Values of tx[ns]-lE2[ms], m >- n, for beryllium-like ions. The sequence of basis sets given by 
Schmidt and Ruedenberg for Be was used in all calculations a 

Li- 

[ms] E2 /~[6s] tz[8s] ~[10s] tx[12s] tz[14s] tz[16s] t~[18s] tz[20s] 

[6s] 13.302 15.302 
[8s] 14.084 16.201 16.444 

[10s] 14.435 16.605 16.854 16.995 
[12s] 14.716 16.928 17.182 17.325 17.347 
[14s] 14.939 17.185 17.442 17.588 17.610 17.859 
[16s] 15.123 17.397 17,658 17.805 17.827 18.080 18.191 
[18s] 15.279 17.576 17.839 17.988 18.010 18.265 18.378 18.477 
[20s] 15.411 17.727 17.993 18.143 18.166 18.423 18.537 18.637 18.603 

B + 

[ms] E2 tz[6s] tL[8s] tz[10s] tx[12s] tz[14s] tz[16s] /z[18s] tx[20s] 

[6s] 15.585 17,435 
[8s] 15.522 17.365 17.250 

[10s] 15,744 17.613 17.497 17.581 
[12s] 15,780 17.653 17.536 17.621 17.622 
[14s] 15,796 17.671 17.554 17.639 17.640 17.639 
[16s] 15,809 17,685 17.568 17.653 17.654 17.652 17.665 
[18s] 15,815 17.692 17.575 17.660 17.661 17.659 17.662 17.662 
[20s] 15.818 17.696 17.578 17.663 17.664 17.663 17.666 17.666 17.666 

C2+ 

[ms] E2 /z[6s] tz[8s] tx[10s] tz[12s] tz[14s] tz[16s] tz[18s] tz [20s] 

[6s] 14.551 15.687 
[8s] 15.748 16.978 17.238 

[10s] 15.660 16.883 17.142, 17.101 
[12s] 15.743 16.972 17.232 17.191 17.213 
[14s] 15.772 17.003 17.264 17.223 17.244 17.244 
[16s] 15.780 17.012 17.272 17.231 17.253 17.253 17.251 
[18s] 15.787 17.019 17.280 17.239 17.260 I7.260 17.259 17~259 
[20s] 15.790 17.023 17.284 17.243 17.264 17.264 17.263 17,263 17.263 

N 3+ 

[ms] E2 tz[6s] /z[8s] tz[10s] /.~ [12s] /x[14s] /~[16s] tz[18s] /x[20s] 

[6s] 15.480 16.653 
[8s] 15.419 t6.587 16.579 

[10s] 15.690 16.879 16.871 16.900 
[12s] 15.745 16.937 16.929 16.959 16.971 
[14s] 15.756 16.950 16.941 16.971 16.983 16.980 
[16s] 15.774 16.969 16.961 16.991 17.003 16.999 17.003 
[18s] 15.780 16.975 16.967 16.997 17.009 17.006 17.009 17.009 
[20s] 15.784 16.979 16.971 17.001 17.013 17.009 17.013 17.013 17.013 
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Table 3 (cont.) 

04+ 
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[ms] E2 /z[6s] tz[8s] tz[lOs] tz[12s] tz[14s] ~[16s] tz[18s] tz[2Os] 

[6s] 16.029 17.193 
[Ss] 15.339 16.453 16.308 

[10s] 15.729 16.872 16.722 16.786 
[12s] 15.716 16.858 16.709 16.772 16.759 
[14s] 15.765 16.911 16.761 16.824 16.811 16.820 
[16s] 15.774 16.920 16.770 16.833 16.820 16.829 16.828 
[18s] 15.780 16.927 16.777 16.841 16.827 16.836 16.835 16.835 
[20s] 15.785 16.932 16.782 16.845 16.832 16.841 16.840 16.840 16.840 

F 5+ 

[ms] E2 /z[6s] tz[8s] /x[lOs] tz[12s] tz[14s] tz[16s] /z[18s] r 

[6s] 15.290 16.192 
[8s] 15.606 16.527 16.515 

[10s] 15.636 16.559 16.547 16.541 
[12s] 15.742 16.670 16.658 16.652 16.662 
[14s] 15.765 16.690 16.683 16.677 16.686 16.688 
[16s] 15.775 16.706 16.694 16.688 16.697 16.700 16.699 
[18s] 15.785 16.716 16.704 16.698 16.707 16.710 16.709 16.710 
[20s] 15.788 16.720 16.707 16.701 16.711 16.713 16.713 16.713 16.713 

Ne 6+ 

[ms] E2 tx[6s] #[8s] #[lOs] ~[12s] tz[14s] tz[16s] p.[18s] tz[2Os] 

[6s] 14.372 15.055 
[8s] 15.700 16.446 16.539 

[10s] 15.611 16.353 16.446 16.408 
[12s] 15.759 16.507 16.601 16.563 16.583 
[14s] 15.759 16.508 16.602 16.563 16.584 16.579 
[16s] 15.783 16.533 16.626 16.588 16.608 16.604 16.607 
[18s] 15.788 16.538 16.632 16.593 16.614 16.609 16.612 16.612 
[20s] 15.792 16.543 16.636 16.598 16.618 16.614 16.617 16.616 16.616 

a All energies are in millihartree with signs reversed. 

basis set size were observed  to be somewhat  worse than  that  for the neu t ra l  and  
posi t ively charged species. 

8. Scaling in Electron Correlation Calculations Using a Systematic Sequence 
of Universal Even-Tempered Basis Sets 

Clearly the p rocedure  for using scaling of the ze ro -order  H a m i l t o n i a n  in con-  

j unc t ion  with a systematic  sequence  of basis sets, as ou t l ined  in Sect. 5, can be 
carr ied out  for a universa l  sequence  of e v e n - t e m p e r e d  basis sets of the form 
descr ibed in Sects. 6 and  7. In  Tab le  3 the results of a series of calculat ions using 
the scaling t echn ique  and a sequence  of universal  e v e n - t e m p e r e d  basis sets for the 
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Table 4. Demons t ra t ion  of 
improved convergence of scaled Ion A1 b A2 c 

second-order  energies a 
Li- 0.88 3.30 
B + 0.03 0.23 
C 2§ 0.24 1.58 

a In millihartree, N 3+ 0.03 0.36 
b A1 = ]tz[6s]-lE2[2Os] 04+ 0.10 0.35 

-tx[2Os]-lEz[2Os]l" F 5+ 0.01 0.52 
c A2 = IE2120s] N 6+ 0.07 1.56 

- l ~ [ 2 0 s 3 - 1 E 2 1 2 0 s ] l  . 

radial beryllium-like ions Li-,  B +, C 2+, N 3+, O 4+, F s+, Ne 6+ are presented. The 
sequence of even-tempered basis sets given by Schmidt and Ruedenberg [13] for 
the beryllium atom are used in all of the calculations. Eight basis sets denoted by 
[ms] m = 6, 8 . . . . .  20, were used. For each basis set the values 

Iz [ns]-lEz[ms] m >_ n 

are given. 

The improved convergence obtained by introduction of a scaling parameter  in the 
zero-order  Hamiltonian is illustrated in Table 4 where differences between 
lx[6s]-lEz[2Os] and tx[2Os]-lEz[2Os], ml, are compared with the differences 
between E2120s] and tx[2Os]-lE2[2Os], A2. In all cases A1 is considerably smaller 
than A2. All values of A1 are less than one millihartree. 

9. Concluding Remarks 

In the present work we have used basis sets of Gaussian primitive functions. When 
the present method is applied with even-tempered exponential-type functions it 
will certainly lead to much higher accuracy with a comparatively modest compu- 
tational effort. The use of a universal basis set negates the greater computation 
required to evaluate integrals over exponential functions since integrals can be 
stored and reused again and again. 

Finally, we comment that the use of large basis sets will become increasingly 
tractable by use of vector processing computers [29] which can achieve consider- 
able efficiency in matrix algebra. The use of the scaling procedure together with 
large universal systematic sequences of even- tempered basis sets should enable 
"chemical accuracy" of 1 millihartree to be approached for small molecules 
especially when it is noted that only a restricted four-index transformation is 
required [30] to obtain the integrals which arise in a second-order calculation and 
that it is the four-index transformation which is the most time-consuming phase of 
many present-day computations. 
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